Myeloperoxidase-dependent oxidation of etoposide in human myeloid progenitor CD34+ cells.
نویسندگان
چکیده
Etoposide is a widely used anticancer drug successfully used for the treatment of many types of cancer in children and adults. Its use, however, is associated with an increased risk of development of secondary acute myelogenous leukemia involving the mixed-lineage leukemia (MLL) gene (11q23) translocations. Previous studies demonstrated that the phenoxyl radical of etoposide can be produced by action of myeloperoxidase (MPO), an enzyme found in developing myeloid progenitor cells, the likely origin for myeloid leukemias. We hypothesized, therefore, that one-electron oxidation of etoposide by MPO to its phenoxyl radical is important for converting this anticancer drug to genotoxic and carcinogenic species in human CD34(+) myeloid progenitor cells. In the present study, using electron paramagnetic resonance spectroscopy, we provide conclusive evidence for MPO-dependent formation of etoposide phenoxyl radicals in growth factor-mobilized CD34(+) cells isolated from human umbilical cord blood and demonstrate that MPO-induced oxidation of etoposide is amplified in the presence of phenol. Formation of etoposide radicals resulted in the oxidation of endogenous thiols, thus providing evidence for etoposide-mediated MPO-catalyzed redox cycling that may play a role in enhanced etoposide genotoxicity. In separate studies, etoposide-induced DNA damage and MLL gene rearrangements were demonstrated to be dependent in part on MPO activity in CD34(+) cells. Together, our results are consistent with the idea that MPO-dependent oxidation of etoposide in human hematopoietic CD34(+) cells makes these cells especially prone to the induction of etoposide-related acute myeloid leukemia.
منابع مشابه
Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach.
Etoposide (VP-16) is extensively used to treat cancer, yet its efficacy is calamitously associated with an increased risk of secondary acute myelogenous leukemia. The mechanisms for the extremely high susceptibility of myeloid stem cells to the leukemogenic effects of etoposide have not been elucidated. We propose a mechanism to account for the etoposide-induced secondary acute myelogenous leuk...
متن کاملMyeloperoxidase Enhances Etoposide and Mitoxantrone-Mediated DNA Damage: A Target for Myeloprotection in Cancer Chemotherapy
Myeloperoxidase is expressed exclusively in granulocytes and immature myeloid cells and transforms the topoisomerase II (TOP2) poisons etoposide and mitoxantrone to chemical forms that have altered DNA damaging properties. TOP2 poisons are valuable and widely used anticancer drugs, but they are associated with the occurrence of secondary acute myeloid leukemias. These factors have led to the hy...
متن کاملInterleukin-10 increases Bcl-2 expression and survival in primary human CD34+ hematopoietic progenitor cells.
Bcl-2 expression has been shown in hematopoietic progenitor cells. Through the use of Bcl-2 specific antisense oligonucleotides we herein report the biologic importance of Bcl-2 expression in primary human CD34+ hematopoietic progenitor cells committed to the myeloid lineage. In bone marrow or peripheral blood derived CD34+ cells Bcl-2 specific antisense decreased cell survival and inhibited th...
متن کاملExpansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells
Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...
متن کاملCurcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species
Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34(+) cells, and granulocytes were incubated for 4 or 24 hours at different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 79 3 شماره
صفحات -
تاریخ انتشار 2011